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Conventionally, high-throughput computational materials searches start from an input set of bulk
compounds extracted from material databases, and this set is screened for candidate materials for
specific applications. In contrast, many functional materials, and especially semiconductors, are
heavily engineered alloys of multiple compounds rather than a single bulk compound. To improve
our ability to design functional materials, in this work we propose a framework to automatically
construct possible “alloy pairs” and “alloy systems” and detect “alloy members” from a set of existing,
experimental or calculated ordered compounds, without requiring any additional metadata beyond
their crystal structure. As a demonstration, we apply this framework to all inorganic materials in
the Materials Project database to create a new database of over 600,000 unique “alloy pair” entries
which can then be used in materials discovery studies to search for materials with tunable proper-
ties. This new database has been incorporated into the Materials Project website and linked with
corresponding material identifiers for any user to query and explore. Using an example of screening
for p-type transparent conducting materials, we demonstrate how using this methodology reveals
candidate material systems that might otherwise have been excluded by a traditional screening. This
work lays a foundation from which materials databases can go beyond stoichiometric compounds,
and approach a more realistic description of compositionally tunable materials.

INTRODUCTION

The power of functional semiconductor materials lies
in the tunability of their properties. Since the dawn
of the Semiconductor Age, traditional semiconductors—
elemental (e.g. Si), IV-IVs (SiC), III-Vs (GaN, GaAs, In-
GaN), II-IVs (CdTe), etc.—have been manipulated in the
laboratory through doping, alloying, processing, and other
techniques to yield desired properties. Tunable semicon-
ductor alloy materials enable a variety of energy and opto-
electronic applications that govern our modern world, from
light-emitting diode (LED) materials e.g. In1-xGaxN[1] to
infrared detectors e.g. Pb1-xSnxTe and HgxCd1-xTe[2] to
piezoelectrics e.g. PbZrxTi1-xO3,[3] and are critical for the
transformation to renewable energy in solar cell materials
e.g. CuInxGa1-xSe2 (CIGS)[4] and CdSexTe1-x (CdTe).
The properties of each of these materials reach far beyond
those of their endpoint compositions, e.g., the band gap
of InGaN is tunable across a wide range, from ∼0.7 eV
(InN) to 3.4 eV (GaN). Naturally occurring semiconduc-
tor minerals are also stable in alloy forms, e.g. olivine
(MgxFe1-x)2SiO4, plagioclase NaxCa1-x(AlySi1-y)4O8, and
cobaltite CoxFe1-xAsS, indicating a strong tendency to-
wards off-stoichiometric stability.[5]

Meanwhile, in the past decade computational materials
discovery has been advancing novel materials design in a
wide range of applications, from thermoelectrics,[6] to Li-
ion battery cathodes,[7] to transparent conductors.[8] In
most of these cases, materials discovery has been targeted
towards stoichiometric “bulk” compounds (also called “par-
ent” compounds or “endpoint” compounds in the context
of alloys). A candidate compound emerges successfully

from a screening if it satisfies a set of property values
within a specific cutoff. This methodology has served as
a useful starting point, but a grand challenge in the field
is determining how to expand this success beyond com-
pounds into off-stoichiometric space to search for ranges
of tunability within materials in a high-throughput con-
text. Indeed, a material may be excluded by its endpoint
properties without taking into account how its properties
can be tuned by doping or alloying. For example, the n-
type transparent conductor Sn-doped In2O3 is an excellent
example of a material where the computed properties of
the endpoint compound (In2O3) are not representative of
the high experimental performance achieved by introduc-
ing tunability.[9]. It is recognized that considering all pos-
sible off-stoichiometry (defects, dopants, impurity phases
and alloying) — intentional as well as unintentional — in
the design of novel materials incurs a vast increase in com-
plexity of search space as compared to on-stoichiometric
compound space. Therefore, part of the challenge is a data
problem: how do we manage the additional complexity in-
duced by including off-stoichiometry?

There have been many extensive and notable pre-
vious efforts to designing alloys using high-throughput
computation. These include but are not limited to
the design of high-entropy alloys[10, 11], high-entropy
oxides[12], Heusler compounds[13] and magnetic Heuslers
[14], as well as alloy design for specific applications in-
cluding magnetocalorics[15] and thermoelectrics[16]. Such
design studies often bootstrap alloy searches from ex-
isting computational databases, such as the Materi-
als Project, AFLOW[17] and OQMD[18]. Previous ef-
forts have also used novel approaches[19, 20] includ-
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Figure 1: (a) A Venn diagram showing materials that are (i) in the Materials Project (MP), (ii) that are associated with an alloy in the
alloy database presented in this work (whether an alloy endpoint or an alloy member), and (iii) are in the Inorganic Crystal Structure
Database (ICSD). Note that each entry in the Materials Project represents a distinct polymorph, whereas duplicates are present in the

ICSD, and so the ICSD is likely overcounted. The Venn diagram gives an overview of how these three databases relate to each other. (b) A
summary of statistics within the alloy database presented in this work.

ing machine learning[21] and DFT-supported CALPHAD
methodologies[22]. The importance of considering alloys in
high-throughput computation is therefore well-known.[23]
However, what many of these prior examples have in com-
mon is that they are often focused on the generation of
new alloy materials within a limited regime of phase space;
this is often from the enumeration of possibilities from a
single crystal structure prototype, or is limited to binary
alloys or a restricted chemical space. In contrast, our cur-
rent work differs in that it offers a general approach for
classifying and searching existing databases, such as those
that typically arise from high-throughput computational
studies, and therefore yields possibilities for more effective
materials discovery screenings.

To clarify the scope of this work, we will recap what
we mean by “alloy” in this context. The Hume-Rothery
rules,[24] traditionally applied to metals, provide a guide-
line for considering whether two materials (A and B)
may form a substitutional solid solution with each other
(AxB1-x), whereby one atom is replaced by another but the
host lattice remains largely unchanged, except for small lo-
cal distortions. These rules require that (1) that the crystal
structures of solute and solvent must be similar (that is,
commensurate with each other), (2) that the atomic ra-
dius of solute and solvent atoms must differ by no more
than 15%, (3) that solvent and solute have the same va-
lency for complete solubility, and (4) the solute and sol-
vent should have similar electronegativity. These rules
are good guidelines, although the cutoffs (“15%”, “similar”)
are open to debate. The methodology presented in this
work therefore is focused primarily on rule (1) to generate
the database using existing algorithms for assessing crystal
structure similarity, with sufficient metadata then retained
to assess rule (3) by querying the database. Rules (2) and
(4) are easily applied by the person retrieving alloys from
the database subject to their own materials design require-

ments; for example, by accessing the database of ionic radii
within pymatgen to further filter down the list of possible
alloys to consider. We emphasize that the alloy database
obtained in this work is only a database of possible alloys
with respect to these rules, and does not guarantee that
these alloys do indeed exist.

Using this database, we create methodology to aid in
the analysis of alloying opportunities, enabling computa-
tional screening for tunable properties in inorganic alloys
when starting from a database of crystallographic struc-
tures and associated properties. First, we map tunable
material space and search for substitutional alloy compo-
sitions and properties within a given set of possible end-
points. Second, we apply this framework to the entire
Materials Project (MP) database[25] for commensurate[26]
(structure-matching within a certain tolerance) structures
to enable analysis resulting in over 600,000 alloy tielines,
encompassing 270,545 chemical systems and 215 space
groups. Third, we provide a series of new techniques to
conceptualize and explore this large alloy space, including
defining an “alloy system” comprised of alloy pairs, ther-
modynamic stability estimates of alloys by alloy content
using a “half-space hull” approach, and an example of a
high-throughput screening for alloy pairs. And lastly, we
outline the limitations of this framework, and suggest next
steps for tunable material screenings.

We focus on semiconductors in this paper, but the
general methodology could be applied to any alloy sys-
tems where there is a reasonable expectation of struc-
tural stability and approximately linearly-dependent prop-
erties with composition. The alloy framework de-
veloped in this work is available in the open-source
pymatgen-analysis-alloys repository and the analyses
and associated enabling functionalities have been incorpo-
rated into the Materials Project website under a Creative
Commons license, with an API to enable other researchers
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to explore the data and download the results. We note
that this API will be publicly available subsequent to the
publication of this pre-print after peer-review.

RESULTS AND DEMONSTRATIONS

Creating an alloy database of “alloy pairs”

In brief, our methods combine sets of structurally
commensurate endpoint compounds into an “alloy pair”
database record, which represent two compositions with
the possibility of forming a solid solution with one an-
other (see Methodology and SI for details). For exam-
ple, endpoint compounds wurtzite GaN and wurtzite InN
form an alloy pair AlxGa1-xN. Applying the method-
ology described here to the Materials Project database
produces 609,841 alloy endpoint pairs. Of these candi-
date alloy systems, 30,161 pairs (4.9%) and 2,120 (17.9%)
systems are found to contain members of intermedi-
ate, non-stoichiometric “member” compositions, suggest-
ing that these may have been previously explored ei-
ther experimentally or computationally. Figure 1 de-
picts a summary of the dataset, as a subset of both
the Materials Project (MP)[25] and Inorganic Crystal
Structure Database (ICSD),[27] and is broken down by
categories including whether the alloy is metal–metal,
metal–semiconductor, or semiconductor–semiconductor,
and whether the alloy endpoints have been previously syn-
thesized experimentally.

In Figure 1, we also highlight that we have determined
45,793 alloy pairs whose endpoint compounds are not de-
tected to have the same space group. This can either be
because the detected space group, being subject to numer-
ical tolerances, is incorrect, or it can be a sign of a phase
transition. An instance of the latter case might be, for
example, one endpoint of an alloy pair might have a small
polar distortion, while the other endpoint might be a non-
polar material; here, the space groups of the endpoints do
not match, but the materials might still be “commensu-
rate” and able to alloy. This demonstrates the importance
of carefully selecting the method for which two materials
are considered to be structurally commensurate, and so
might form a substitutional alloy. In the context of a ma-
terials screening, including alloys drastically expands the
accessible and searchable parameter space. When proper-
ties of an alloy pair are considered, we take properties of
the end-points when known and assume Vegard’s law with
no bowing for lattice constant, EG and 1/m∗

h.[28] We note
that excluding bowing is a crude approximation for band
gap, but bowing is not as significant for effective mass (see
SI).[29]

Exploration of alloy systems

By combining alloy pairs that are all commensurate with
one another, “alloy systems” can be generated (see Method-
ology) in which each alloy system spans a region of ac-

cessible phase space. Applying this methodology to the
Materials Project creates a total of 11,876 possible alloy
systems. One application of the alloy system framework is
the construction of semiconductor bowing plots, which are
useful for visualizing lattice matching and band gap tun-
ing in semiconductor alloys, and are typically constructed
manually via a literature review. A typical example might
be a plot showing wurtzite III-V alloys system (GaN, InN,
etc.), but can be generalized for any alloy system. Here, we
take an example of two systems which have been studied
experimentally but not as extensively as the III-V system:
zincblende II-Ch and chalcopyrite I-III-Ch2 chalcogenide
materials [30] Compounds are grouped by commensurate
structure, each marker corresponding to an experimentally
observed endpoint compound, and each tieline corresponds
to an experimentally observed alloy (e.g. ZnxMg1-xS).
For most of the compounds plotted are in their most sta-
ble polymorph, however we note some exceptions (e.g.,
MnN, MnSe, and CdSe have a more stable polymorph than
zincblende, but zincblende is plotted here for clarity and
completeness).

Using the alloys systems framework, we generate cor-
responding alloy systems for zincblende and chalcopyrite
chalcogenide semiconductors. These systems are plotted
in the two panels of Figure 2(b) as a function of lattice
parameter a and band gap EPBE,corr

G , where each com-
mensurate system is merged into a shape to represent their
range. Alloy systems are generated as a function of a single
compound — in this case zincblende ZnS and chalcopy-
rite CuAlS2 — and then outputs are filtered to include
only chalcogenide compounds with commensurate oxida-
tion states. Since semi-local DFT underestimates the band
gap, we plot PBE gaps with an applied approximate empir-
ical correction factor from the literature, as EPBE,corr

G .[31]
However, for better accuracy, we recommend performing
additional hybrid functional calculations to complement
the initial screening and provide a better estimate the gap
in the alloy database or, in the future, using more accurate
calculations to construct the database. We emphasize that
the purpose of this work is not to demonstrate accurate
band gap prediction since more accurate methods are well-
known, but to demonstrate the machinery of constructing
alloy pairs and connecting these into alloy systems for the
purposes of a materials discovery screening.

We observe in Figure 2 that the shapes and features
of computationally-generated alloys systems in (b) quali-
tatively match the experimental diagrams in (a), subject
to uncertainities in band gaps as explained above. Addi-
tionally, more information is captured in (b), in particular
the members (MP and ICSD) of many of the tielines are
denoted which indicate which alloys have seen previous
study. Including additional hypothetical alloy pairs here
increases range of search space, by nearly 50% percent for
II-Ch and by over 50% for I-III-Ch 2, and new alloy pair
tielines are marked with dotted lines such as CaxCd1-xSe
and AgAl(SexTe1-x)2. The computed alloy system plots
can also inspire new materials design searches over a vari-
ety of multinary alloys. For example, in a search an am-
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Figure 2: A comparison of a lattice parameter versus band gap plot for wide band gap zincblende and chalcopyrite chalcogenide materials
(a) a manually-constructed plot from the experimental literature,[30] including experimental bowing, and (b) generated computationally
from an “alloy system” in our database. Note that in (b) each alloy system is filtered to include only chalcogenide (S, Se, Te) compounds

with commensurate oxidation states, that band gaps EPBE,corr
G are computed PBE gaps with an approximate empirical correction factor,[31]

and that the lattice parameter is computed from the conventional unit cell.

ber LED material (∼580-590 nm, i.e. 2.10–2.14 eV) with
a lattice parameter matched to zincblende GaAs (5.6531
Å), one may examine the region around ZnxMn1-xS or
CuAlxGa1-xSe2 alloy pairs.

In principle, for a given alloy system, an alloy’s lattice
parameter (or volume cube root, if comparing non-cubic
systems) and band gap can be tuned within the bounds of
the shape bounded by the alloy end-members in the plot
by varying alloy composition. Here we show a plot for a
simple comparison with conventional semiconductor a vs.
EG plots, but alloy system plots can be created for any set
of properties and can in principle be expanded into higher
dimensions. Some degree of bowing is likely in these sys-
tems, as shown in Figure 2(a). Additionally, discontinuities
in Vegard’s law can arise when gaps transition from direct
to indirect nature across alloy space. However, this analy-
sis is helpful as an initial guide and provides a systematic
method for generation of such figures which are already
commonplace in the literature.

Estimating alloy stability

So far we have introduced a set of alloys that are purely
hypothetical, yet have not discussed thermodynamic sta-
bility and synthesizability. Computationally determining
synthesizability of a given alloy is non-trivial, and re-
quires constructing a temperature-dependent phase dia-
gram, computing the effects of various entropy terms, and
potentially considering the effects of nucleation and kinet-

ics. A simple (yet imperfect, due to the typical T = 0K
approximation of DFT) metric to assess stability in solid
state compound materials is the “energy above the convex
hull” (Ehull), where an Ehull of 0 eV/atom defines a thermo-
dynamic ground state, and Ehull is reported for compounds
in the MP database as derived from phase diagrams con-
structed from DFT calculations. For alloys, even deter-
mining this simple Ehull metric is nontrivial — it requires
computing a variety of orderings, as well as fully explor-
ing possible competing polymorph phases and all of their
possible orderings (see Discussion).

Here, as a method of approximating whether a given al-
loy may be stable or synthesizable, and a first step before
performing additional in-depth calculations, we have cal-
culated a hull across alloy content using the half-space in-
tersection of the lines representing the linear interpolation
of formation enthalpies between the two alloy endpoints
— hereafter called a “half-space hull” —t o identify ranges
of alloy content x at which different polymorphs might be
stable. This is defined by a “formula alloy pair” and “alloy
segments” (see Methodology).

Figure 3(a) depicts a set of “formula alloy pairs” de-
rived from the alloy database, made up of alloy pairs that
all have the same composition. For example, a SbxBi1-xOF
alloy is shown in the third panel of (a) and is magnified in
Figure 3(b), with BiOF endpoint compounds on the left
side (x=0) and SbOF endpoint compounds on the right
side (x=1), and with the y-axis representing Ehull. Only
compounds that are present in the MP database are in-
cluded here. For each case where a BiOF compound is
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Figure 3: (a) A set of half-space hull intersections, a simple interpolation based on endpoint formation energies to find cross-overs, for six
representative formula alloy pairs. It is not expected these cross-over points will be exact but might provide an estimate. For each alloy
system, this then gives a range of allowed compositions and phases. Below each half-space hull construction, a decomposition diagram is
plotted as a function of x. (b) A representative formula alloy pair of SbxBi1-xOF, with three unique phases lying on the half-space hull.
Dotted lines depict where a competing polymorph comes stable. Decomposition plot on the right shows thermodynamic decomposition

products from a ternary phase diagram, as a function of x.
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structurally commensurate with a SbOF compound, an
AlloyPair is formed and a colored dotted line is drawn in
Figure 3(b). For example, P4/nmm BiOF (mp-753594, on
the hull) is connected with P4/nmm SbOF (mp-989191,
with Ehull=0.192 eV) by a blue dotted line, while Pcba
BiOF (mp-760162, with Ehull=0.017 eV) is connected with
P4/nmm SbOF (mp-561533, on the hull) by a green dot-
ted line. In this formula alloy pair, P21/c (purple) and
Pnma (red) pairs are also drawn.

The “half-space hull” is drawn as a continuous grey line
in Figure 3(b). The changes of slope along this line repre-
sent “alloy segments” (see Methodology), which represent
phase changes as x is increased. Thus, in this example
the half-space hull defines segments of SbxBi1-xOF where
P4/nmm is the lowest energy phase (0 . x . 0.05), where
P21/c is the lowest energy phase (0.05 . x . 0.15), and
where Pbca is the lowest energy phase (0.15 . x . 1).
Since a phase does not have to lie on the hull to be syn-
thesizable, we draw a region above the half-space hull (the
“stability region” in a shaded grey gradient) at which the
“energy above the half-space hull” is less than 0.1 eV/atom.
It is typical in materials screenings to define an arbitrary
cutoff such as this, below which materials are more likely
to be synthesizable or metastable. According to this cut-
off, it may be possible to synthesize alloys that lie within
the grey region, rather than only the alloys that lie directly
upon the half-space hull. For example, it may be possible
to synthesize Pbca SbxBi1-xOF at small values of x, how-
ever it is far less likely to be able to synthesize P4/nmm
SbxBi1-xOF alloys at high values of x since the tieline for
this alloy pair lies well outside of the stability region. We
note that there are other endpoint compounds that do not
have commensurate pairs (black circular markers), and for
this method to be technically complete the formation en-
ergies of the commensurate structure pairs for these poly-
morphs would have to be computed.

Figure 3(a) depicts other possible scenarios of formula al-
loy pairs within the alloys database. Cases where both end-
points have paired ground states (three examples on the
left) are most likely to provide useful information using the
half-space hull method. For example, in MgxBe1-xSiN2,
both ground states are Pna21 and thus it is likely that
a solid solution can be synthesized across all values of x
with this structure retained. In ZnxSn1-xTe, both end-
points have commensurate ground states and no other
known polymorphs with Ehull <0.1 eV/atom. Thus a
phase change from Fm3̄m to F 4̄3m is expected at approx-
imately x=0.5 using the half-space hull formalism. How-
ever, there are systems where one or both of the ground
states do not have a commensurate pair (three examples
on the right), such as NbxCe1-xSe2 and Ca(BixAg1-x)2O4,
and thus more calculations are needed in order to con-
struct a reliable half-space hull. We note that this would
add more possibly unstable or unsynthesizable endpoints.

Below each formula alloy pair in (a) is a fractional de-
composition diagram. This consists of the various ther-
modynamic decomposition products and their fractional
ratio, as a function of x, and is computed by pymatgen.

The decomposition products gives an indicator of possi-
ble competing phases across the alloy tieline that may im-
pede the formation of a solid solution, derived from the
already phase diagram for the appropriate chemical sys-
tem. In the MgxBe1-xSiN2 and ZnxSn1-xTe, the decompo-
sition products consist solely of the endpoint compounds,
and increases monotonically with x. However the frac-
tional decomposition of SbxBi1-xOF, enlarged and plotted
on the right-hand panel of (b), is more complicated and
consists of four decomposition products: endpoints BiOF
and SbOF, as well as Sb2O3 and Bi7O5F11. Thus, al-
though the half-space hull tielines lie below 0.1 eV/atom,
these SbxBi1-xOF alloys may be challenging to synthesize
due to competing thermodynamic reaction products.

As a check to whether the half-space hull is appropri-
ate as a screening tool — or in other words, whether the
linearly-interpolated half-space hull estimate is consistent
with the DFT computed convex hull of known alloy mem-
bers — we can include members on these plots for sys-
tems in which members are present in databases and their
Ehull values are known. For example, in Figure 4(a) we
showcase members in the formula alloy pair construction
for GaxAl1-xN. It is shown that the calculated formation
enthalpy of the wurtzite (space group P63mc) alloy mem-
bers lie below the zincblende (space group F 4̄3m), which
is consistent with with the half-space hull; here, these data
points refer to the formation enthalpies as calculated with
DFT using small ordered approximations from entries al-
ready existing in the Materials Project database. In Fig-
ure 4(b–g), we plot six other examples of formula alloy pair
half-space hull constructions for which there are members
included in the alloy pairs. For ZrxHf1-xO2 (f) the alloy
formation energies for space groups P42/mnm, P42/nmc,
and Fm3̄m at x=0.5 lie nearly exactly on the dotted lines
from the formula alloy pair tielines. Other systems (e.g.
SrxCa1-xTiO3 and CuLixNi1-xO2) have alloys ranked in
the same order as the half-space hull prediction, albeit
not precisely on the predicted lines. We note that some
“alloys” are extensively sampled in the Materials Project
database such as Li2MnxCo1-xO3, likely due to its interest
as a battery material leading to a large amount of calcu-
lations performed on this compound with varying degrees
of lithiation. All of these plots are generated using the
tools provided by pymatgen-analysis-alloys, and can
be similarly constructed for any system of interest.

Therefore, when analyzing the set of alloy pairs or al-
loy systems within our database, it is important to assess
which half-space hull scenario a given formula alloy pair lies
within and whether there exists a region of phase space
where stabilization is likely. Additionally, assessing pos-
sible decomposition products informs whether to expect
multiple decomposition products, which could impede for-
mation of the alloy. Overall, the half-space hull framework
of drawing lines to estimate segments of phase stability is
not rigorous, since formation enthalpy does not follow Ve-
gard’s law and configurational entropy is not taken into
account. Rather, this method is intended to provide an es-
timate of what alloys might be present and where in alloy
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Figure 4: Examples of seven representative “formula alloy pairs” with members included. The Ehull of each member is sourced from the
Materials Project database, and can be compared to the linearly-interpolated formation energy for each alloy pair. Alloy pairs (dashed lines)

and members of alloys pairs (square markers) are colored by space group, and plots are as described in Figure 3.

space they might be, as a tool to justify or prioritize ad-
ditional calculations in a high-throughput context, and is
therefore an entry-point for determining which alloys may
be experimentally realizable.

Example of screening alloy pairs for p-type
transparent conductors

Including alloys can expand the number of material can-
didates generated by high-throughput screenings, and re-
veal candidates that otherwise would not have emerged.
Here, to demonstrate this quantitatively, we screen our
candidate alloy pair dataset for possible p-type trans-
parent conductor (TC) candidates. Discovery of a high-
performance p-type TC could enable breakthroughs in so-
lar cells and transparent electronics, among other appli-
cations, but to date there are no p-type TCs that per-
form as well as n-type TCs.[32] A high-performing p-type
TC is likely to require a low hole effective mass (m∗

h)
to enable high hole mobility and a wide band gap (EG)
to enable optical transparency, among other properties.[9]
So far, several data-driven explorations have been per-
formed to search for p-type TC candidates,[8, 33, 34] but to
our knowledge no screenings have been performed looking
specifically for alloys or specifically for tunable materials
rather than compounds.

For this analysis, we use a set of stable or metastable

(Ehull < 0.1 eV) representative compounds (i.e. alloy end-
points) where m∗

h has been calculated (same as the set
shown in Figure S1).[35] First, Figure 5(a) shows a set
of bulk compounds from the Materials Project database,
with material properties EPBE

G on the x-axis and m∗
h on

the y-axis. The grey “p-type TC regime” depicts a range
of parameter space where 1.5 eV < EPBE

G < 3 eV (and thus
possible experimental gaps greater than 3 eV, since PBE
systematically underestimates EG) and m∗

h < 1.5, where
p-type TC candidates may reside.[9] This figure plots ap-
proximately 1,000 compounds, approximately 150 of which
lie within the p-type TC region and contain compounds
that have emerged from previous screenings (e.g. ZrOS,
TaCu3S4, and Al2ZnTe4). The choice of cutoff value tends
to be motivated by expected values of physical parame-
ters (e.g. absorption edge and hole mobility), but incur
uncertainties in calculated value and inconsistencies be-
tween descriptor value and real physical value. Hence, the
goal is to suggest a list of target candidates that may be
suitable to prioritize for future computational study and
experimental inquiry. Therefore, Figure 5(a) represents
a conventional materials discovery screening.

In contrast, Figure 5(b) depicts a subset of alloy end-
point compounds (black circular markers) and correspond-
ing alloy pair tielines (thin lines between points), and as-
sumes Vegard’s law to linearly extrapolate tielines. This
analysis yields 233 alloy pairs with tielines that intersect
the “p-type TC regime,” and a subset of 192 alloy pairs
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Figure 5: An example of a computational screening of an alloy search space, with the approximate computed p-type TC regime designated
with a grey box. (a) All bulk compounds that intersect the approximate p-type TC regime. (b) All alloy pairs that intersect the

approximate computed p-type TC regime. (c) “Hidden” alloy pairs that intersect the p-type TC regime where both endpoints lie outside of
the regime. Pairs are denoted by the range of their fractional alloy compositions which lie within the regime, with details denoted in Table I.

in which one or more endpoint lies outside the regime are
plotted here for readability. Thus, this plot demonstrates a
set of possible, additional alloy pairs to consider as p-type
TCs that previously may have been overlooked. Within
the grey region, the alloy tielines indicate there may be
combinations of EPBE

G and m∗
h beyond those represented

by the endpoint, alloy pair compounds in Figure 5(a).
In Figure 5(c), we take this a step further by highlight-

ing a subset of ten “hidden” alloy pairs that intersect this
p-type TC regime but where both of the endpoints lie out-
side of the regime. This analysis illustrates compounds
that themselves are not p-type TC candidates but whose
alloys may warrant further exploration. Table I reports all
the hidden pairs from this analysis, including the ten hid-
den pairs from Figure 5(c). Included in this table the range
of x where properties lie within the p-type TC regime (“x
range”), the range of EPBE

G and m∗
h achieved within this

window, and Ehull of the endpoints (where EA
hull corre-

sponds to the first compound of a pair and EB
hull to the

second). It is also denoted whether a region of the x
range lies on the half-space hull, and the number of de-
composition products (excluding the endpoint compounds
from the count). Most of the alloy pairs that emerge from
this screening are quaternaries (alloys of two ternary com-
pounds, e.g. AlCuSxSe1-x), with several ternaries (alloys
of binary compounds, e.g. CuxLi1-xCl) and quinternaries
(alloys of quaternary compounds, e.g. Sr2MgxCd1-xWO6).
To our knowledge, none of these alloy pairs have been
studied previously as p-type TCs, with the exception of
La2SeO2 and Gd2SeO2 which have been predicted previ-
ously using a high-throughput approach.[33] We note that
this is just one example of an application where including
alloying could yield new material candidates.

DISCUSSION

We have demonstrated a framework to propose new al-
loys and access the potential tunability of materials for
high throughput screenings. In our presented database,
we designate “alloy pairs” between commensurate end-
point structures; although we present 600,000 unique pairs,
this database comprises a subset of possible physical al-
loys. Several extensions of the presented alloy database
are possible, beyond constructing structure-matched pairs.
For example, in many experimentally observed alloy sys-
tems, endpoints may not structure match within the tol-
erances we use here but are still “commensurate” with
one another, i.e. they can be connected through a dis-
placive phase transformation (e.g., orthorhombic SnS and
rocksalt CaS).[26] These pairs are not included in this
database, however, advances in methodologies for deter-
mining whether displacive phase transformations are pos-
sible between a given pair of materials could allow the
database to be expanded in future.[36, 37] In some cases
incommensurate structures, where symmetries are distinct
from one another but can be connected through a recon-
structive transformation, can also form heterostructural
alloys which are of increased interest for materials design
(e.g., rocksalt MnO and wurtzite ZnO can alloy to form
MnxZn1-xO).[26] Similarly, a material might be tuned by
varying vacancy concentration topotactically (e.g. NiOx).
Furthermore, there are alloy pairs and alloy systems that in
principle could alloy, but have no commensurate endpoint
structures currently on MP (e.g. formula alloy pairs la-
beled “unpaired ground states” and “not in DB” in Figure 3,
so in these systems more calculations would be required be-
fore the alloy could be defined. Nevertheless, in principle,
the methodology presented here could be expanded upon
to include and categorize all plausible commensurate and
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Table I: “Hidden” alloy pairs with properties of interest to p-type TCs.

Pair IDs
(A–B) Alloy formula Space

group x range EPBE
G range
(eV) m∗

h range EA
hull

(eV/at.)
EB

hull

(eV/at.)
On half-

space hull?†
# decomp.
products‡

mp-22919–mp-23268 (NaxAg1-x)I Fm3̄m 0.27–0.74 1.52–2.85 0.85–1.49 0.093 0.000 yes 0
mp-571386–mp-22905 (LixCu1-x)Cl Fm3̄m 0.20–0.52 1.51–3.46 1.13–1.36 0.178 0.020 no 1
mp-684712–mp-32891 (YxGd1-x)2S3 I 4̄2d 0.54–0.57 1.50–1.53 1.49–1.50 0.022 0.036 no 0
mp-5782–mp-556916 (GaxAl1-x)AgS2 I 4̄2d 0.62–0.81 1.50–1.59 1.24–1.50 0.000 0.003 yes 0
mp-4979–mp-8016 AlCu(SexS1-x)2 I 4̄2d 0.02–0.24 1.50–1.68 1.35–1.50 0.000 0.000 yes 0

mp-756317–mp-3536 Al2(MgxHg1-x)O4 P4/mbm 0.05–0.16 1.53–1.94 1.21–1.49 0.087 0.000 yes 1
mp-756317–mp-2908 Al2(ZnxHg1-x)O4 P4/mbm 0.07–0.62 1.52–2.91 1.13–1.50 0.087 0.000 yes 1
mp-9081–mp-11742 CsNd(TexS1-x)2 R3̄m 0.55–0.75 1.50–1.67 1.36–1.49 0.002 0.000 yes 0

mp-555093–mp-558690 (ZnxCu1-x)B4O7 Cmcm 0.26–0.63 1.53–3.48 0.85–1.31 0.047 0.058 yes 1
mp-13973–mp-7233 (LaxGd1-x)2SeO2 P 3̄m1 0.14–0.15 1.50–1.51 1.50–1.50 0.000 0.000 yes 0
mp-23520–mp-23417 In(SnxPb1-x)2I5 I4/mcm 0.31–0.83 1.50–1.73 1.11–1.49 0.056 0.023 yes 2
mp-23417–mp-23504 In(SrxSn1-x)2I5 I4/mcm 0.05–0.44 1.50–2.09 1.04–1.50 0.023 0.046 yes 2
mp-754818–mp-756933 (TlxNa1-x)TaO3 P4/mbm 0.36–0.53 1.50–1.91 1.39–1.50 0.087 0.002 yes 0
mp-7482–mp-8402 Rb(MgxHg1-x)F3 Pm3̄m 0.14–0.16 1.52–1.64 1.41–1.47 0.000 0.002 yes 0

mp-760396–mp-761390 Ta(FexAl1-x)O4 I41md 0.31–0.42 1.51–1.79 1.35–1.50 0.056 0.019 no 0
mp-755054–mp-755998 (ZrxTi1-x)3N2O3 Cmcm 0.06–0.71 1.51–2.13 1.08–1.50 0.008 0.002 no 4
mp-760655–mp-757905 Li3(TixBi1-x)(PO4)2 C2/m 0.44–0.60 1.51–2.08 1.16–1.48 0.066 0.072 yes 6
mp-18903–mp-18848 Sr2(MgxCd1-x)WO6 Fm3̄m 0.16–0.54 3.39–3.50 0.95–1.50 0.082 0.009 no 0
mp-18848–mp-19400 Sr2(NixMg1-x)WO6 Fm3̄m 0.5–0.53 1.52–1.65 1.45–1.50 0.009 0.010 no 0

†Whether a composition within x range lies on the half-space hull. ‡Number of decomposition products from half-space hull; excludes
endpoint compounds from count.

incommensurate alloy pairs, and each of the cases men-
tioned here could be incorporated into future iterations of
this alloys database.

We note that the underlying, input database from which
our alloy database is derived can contain biases. These bi-
ases, e.g. concerning structural as well as chemical cover-
age, can propagate into the alloy database, which should
be acknowledged when interpretting results. As the un-
derlying database expands, this infrastructure has been
established to automatically “build” new versions of the
alloy database as new data becomes available. Impor-
tantly, as better methods for calculating more accurate
lattice parameters or band gaps become accessible for high-
throughput computation, the alloy database incorporates
this improved data.

Once a set of potential alloys are suggested from this
database, more reliable methods to assess alloy solubil-
ity can be used to either rule out or confirm a poten-
tial alloy. For example, automated cluster expansions[38]
or the generalized quasi-chemical approximation (GQCA)
method.[39] Our work is intended to serve as a starting
point from which to determine systems to consider for such
in-depth analyses. The half-space hull diagrams provide a
guide to select alloys within a given chemical space which
may be stable and synthesizable. For example, the follow-
ing calculations of increasing computational cost could be
explored based on outputs from the alloys database:

• For compounds at endpoint A (or B) in which a com-
mensurate compound at endpoint B (or A) is not
present on MP, there is insufficient information in the
database to calculate an alloy pair (for example, the
black circular markers in Figure 3 without tielines)
such as ZnxCu1-xS). Here, the missing compound(s)
can be calculated and added to the database. This
is still important even if such a compound is unsta-
ble or not experimentally realizable at the endpoint,
since there may be a region within alloy space where

synthesizability becomes possible.

• For alloy pairs in which member compounds are not
yet known to exist, members can be calculated (e.g.
at x=0.5) for a few different orderings to assess re-
alizability, or give an indication of expected bowing
and other parameters.

• Many real alloy materials are disordered, rather than
ordered. For members within in alloy pair, spe-
cial quasi-random structure (SQS) calculations can
approximate structures of fully random alloy poly-
morphs to provide a counterpoint to the small-cell
ordered structures more typical in a database such
as the Materials Project.[40]

• To account for configurational entropy and thermo-
dynamics of specific alloy members, the generalized
quasi-chemical approximation (GQCA) can be used
to estimate free energy,[39] and subsequently higher
order methods such as cluster expansions can be ap-
plied to further investigate specific systems for which
high quality phase diagrams are required.[38]

For immediate use, our alloy database has been incor-
porated into the Materials Project as an app in the new
website release and API, in the hope that this will serve
as a guide for researchers performing screenings of tun-
able materials. The alloys database will be updated along-
side the Materials Project database. A flowchart of the
alloys database pipeline and incorporation onto the Mate-
rials Project is shown in Figure 6.

CONCLUSION

In this paper we have presented a new frame-
work to analyze alloys in the context of materi-
als databases, implemented it into the open source
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Figure 6: A flowchart showing the data processing pipeline outlined in the methodology, starting from a generic crystal structure database
such as the Materials Project, and ending with a publicly accessible API and website to explore the data. Wurtzite GaN is shown here as an

example, as an alloy pair with InN and as an alloys system plotted on the MP website.
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pymatgen-analysis-alloys package, and created an
open-source alloys database that has been incorporated
into the Materials Project website. We have presented a
few case studies here of how this database can be utilized
in the context of materials research and design.

Importantly, all the analysis presented here has been
performed without any new calculations, which showcases
some of the data analysis opportunities from mining exist-
ing databases. A decade into the Materials Genome Ini-
tiative, the materials discovery community has produced
large quantities of data in multiple databases, but data pro-
duction is just the start; it is essential that data is curated,
structured, and connected in a way to yield the maximum
value to the community.

In particular, one of the key challenges is how to link
and apply this data to successfully use computational pre-
dictions to inform experimental results, especially as ex-
perimental databases grow.[41, 42] In particular, experi-
mental progress in semiconductors typically starts from a
well-studied, well-characterized material and modifies its
properties iteratively with the addition of dopants or al-
loying elements during growth. The framework of this pa-
per addresses this aspect of materials design by creating a
database of candidate, tunable materials by a data-focused
approach which can use existing materials databases to
suggest alloys between pairs of already-known materials.
Thus, a new materials screening procedure is now possi-
ble that can emphasize experimentally-accessible materi-
als and suggest screening outputs that would have been
previously wholly overlooked.

METHODOLOGY

We have created an open-source code,
pymatgen-analysis-alloys, that allows the construction
of an alloy database when provided with an input database
containing crystal structures. As a demonstration, we
apply this code to the Materials Project database. The
left side of Figure 6 depicts the data processing pipeline
of the alloys database, as described here. This code is
also used for the automatic generation of the plots shown
in this manuscript, with only light additional editing
performed for presentation.

The method outlined here does not require any prior
knowledge of which materials might form alloys. While
partial occupancies in e.g. a Crystallographic Informa-
tion File (.cif) indicates the possibility of alloying, this
criteria only captures known systems, and hence does
not fully explore the possible alloy space. The challenge
when constructing the database is in the data process-
ing pipeline, and addressing combinatorial problems when
large databases of hundreds of thousands of entries are
used.

The method is as follows: for each crystal structure in
the input database, designated as a potential “endpoint,”
we find all other compounds that share its anonymous for-
mula (e.g. “ABC2”), and perform a pairwise comparison
between all materials to detect commensurate structures

using the StructureMatcher in pymatgen[43]. A pre-filter
is performed that checks for detected space group, calcu-
lated with spglib[44], using both tight and loose toler-
ances. This pre-filter is imposed with the logic that it is
a necessary but not sufficient condition that two commen-
surate crystal structures will have the same space group.
After a pair of crystal structures are identified as an end-
point, information is extracted such as the alloying species,
including oxidation state, and whether the alloy is isoelec-
tronic, and stored as an instance of an AlloyPair class.
This definition of “alloy” does not consider alloys formed
through interstitial alloying additions or other types of al-
loys.

All AlloyPair entries contain structural properties,
such as space group and primitive cell volume, but can be
supplemented with additional properties. For this demon-
stration, supplemental properties are taken from the Mate-
rials Project and include Ehull, EG from the Purdue-Berke-
Ernzerhof (PBE) functional from the Materials Project,
and electron and hole effective masses from Ricci et al.[35]
(note that these are only computed for a subset of the
MP database), but in principle this can be expanded to
include any material property. Methods are provided to
interpolate these properties using Vegard’s law (assuming
no bowing) for a given alloy content to allow for easier
plotting and searching (see SI).

Once a set of AlloyPair entries are constructed, they
are grouped by chemical system and iterated over to search
for potential members, defined by the AlloyMember class,
using a similar approach. This allows a database query
to reveal which alloys already have existing data avail-
able, and thus may be more experimentally-accessible al-
loys when performing a screening.

A set of alloy pairs can be grouped together as an “al-
loy system,” defined by the class AlloySystem, using a
network graph method whereby each edge in the graph is
an alloy pair and connected subgraphs form the respec-
tive alloy systems. The code allows for alloy systems to be
merged when a member of one system might be the end-
point of another system, for example an alloy system with
ternary endpoints where one endpoint is itself a member
of a binary alloy pair.

Another useful grouping is the set of alloy pairs which
all have the same set of endpoint formulae: these can
be grouped together as a “formula alloy pair,” defined by
the class FormulaAlloyPair. If formation enthalpies are
known for the endpoints, this class is able to define re-
gions where a given polymorph is stable according to a
simple linear interpolation, and define alloy segments (class
AlloySegment) which encode the critical alloy contents at
which a phase transition may occur between two poly-
morphs. Furthermore, if any alloy members are known,
including their formation enthalpies, this data will inform
how accurate the simple linear interpolation may be. Ex-
amples of these can be seen in Figure 4.

For the example database generated in this work, we
exclude compounds including H, He, noble gases, and
heavy elements with atomic numbers greater than 83 (Bi),
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although all these entries are present in the underlying
database, but we do not perform any further filtering based
on chemistry and leave this as a capability for the user
querying the database to decide exactly what chemical sys-
tems, maximum electronegativity differences, etc. are al-
lowable for their specific design case.

The API to access and search the database is defined in
the open-source emmet code. The user interface on the Ma-
terials Project website is constructed using the open-source
Crystal Toolkit web framework. All open-source code de-
scribed in this work is open to review and suggested edits
by other researchers, and any contributions are welcomed
by the authors.
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Supplementary Information

Open-source code

All code used in the preparation of this manuscript is
open source. Where future developments require changes
to the methods or algorithms described in this manuscript,
these open source codes will contain the ground truth for
how the alloy database is constructed.

The codes developed were:

• pymatgen-analysis-alloys An add-on package for
the pymatgen code that contains the AlloyPair,
AlloyMember, AlloySystem and FormulaAlloyPair
classes and related logic.

• emmet This is an existing package containing in-
formation on how to build the databases used
by the Materials Project. Code was added to
emmet-core to define the database document schema
and emmet-builders to define the scripts to con-
struct the database in a scalable manner. Code was
added to emmet-api to allow researchers to access
the alloy database constructed in this work through
the Materials Project.

At the time of writing, pymatgen-analysis-alloys
is installable using the Python Package Index via pip
install pymatgen-analysis-alloys and importable via
import pymatgen.analysis.alloys. The main classes
are located in pymatgen.analysis.alloys.core and are
documented and unit tested. Readers are encouraged to
refer to the code for any updates to this methodology sub-
sequent to publication.

Unique Identifiers

This work uses a document-based database, namely
MongoDB, which does not have an explicit schema. The
database fields present will be derived based on the avail-
able attributes in the AlloyPair and other objects. The
canonical reference for these attributes is the code itself.

Nevertheless, the use of a unique, primary key is essen-
tial for database management.

For AlloyPair this is an underscore-delimited string
containing the unique identifiers of the endpoints from
whatever input database is used. This implicitly assumes
that an underscore is not used in the input databases’s
unique identifiers. For example, an AlloyPair consisting
of materials mp-804 (GaN) and mp-661 (AlN) would have
the unique identifier “mp-661_mp-804”. The AlloyPair
construction orders the endpoints deterministically, such
that AlN will always be endpoint “A” and GaN will al-
ways be endpoint “B” regardless of the order of endpoints
provided during construction.

For AlloySystem, the unique identifier is based on the
first six digits of the MD5 hash of a sorted, underscore-
delimited list of all unique identifiers of individual mate-
rials in that alloy system. This ensures that the identifier

Figure S1: 2D density plots showing (a) the distribution of EG

and m∗
h when considering only stoichiometric alloy compounds

(“endpoints”) and (b) an approximate distribution of EG and m∗
h

including the intermediate alloy compositions, illustrating the
different between a discrete and practically continuous distribution

of properties.

will change as additional members are added to the alloy
system.

Database Building

Constructing the entire alloy database is CPU-bound
and takes approximately one day on a 2.3 GHz 8-core
Intel CPU. For Materials Project production purposes,
this database build is typically parallelized across multiple
nodes and “pleasingly parallel”, since it can be parallelized
across anonymous formula (for alloy pair and alloy system
construction) and across chemical system (for alloy mem-
ber construction) such that the total build time is greatly
reduced.
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Merging of AlloySystem

Consider there is an alloy system containing an end-
point with anonymous formula ABC. However, this end-
point ABC is also found to be a member of another alloy
system (say, a system made up of the two endpoints, AB
and AC). In this case, we can conclude the first alloy sys-
tem can be subsumed into the second alloy system. This
process of “merging” alloy systems is important to remove
spurious alloy systems, but also presents a subtle problem
since whether a material should be considered an alloy or,
simply, a new stoichiometric compound is open to interpre-
tation. For example, chalcopyrite is typically considered
a compound in its own right, but under this lens would
be seen as an alloy of two zincblende endpoints. There-
fore, alloy system merging has not been performed on the
database in this work, but has been fully implemented in
the code and can be done manually on an as-needed basis.

Vegard’s Law Approximations

In the manuscript, we assume Vegard’s law applies with
no bowing to construct Figure S1, Figure 5, and for prop-
erties a, EG, and inverse effective mass (i.e. 1

m∗
e
and 1

m∗
h
).

This is a crude approximation for the purposes of provid-
ing a window for a given alloy in which properties might
lie, not as a way to accurately estimate properties. The
literature commonly applies Vegard’s law for alloys to es-
timate a and EG. In comparison, there is less consensus

across the literature about whether Vegard’s law is appro-
priate for m∗ and whether bowing is pronounced; this is
likely dependent on the specific characteristics of the elec-
tronic band structure for the alloy endpoints. According to
Piprek[29] and Singh[28], Vegard’s law is appropriate for
inverse effective mass with the latter providing a deriva-
tion. According to Piprek “bowing is not pronounced for
the effective mass of most alloys,” as compared to stronger
bowing for band gap. We note that “most alloys” is likely
referring to III-V materials, since these are the dominant
class of alloys studied — and for III-Vs, Vegard’s law is
used in the literature to estimate effective mass e.g. for
(AlGaIn)N alloys.[45]

Alloys increase parameter space

To graphically illustrate how including alloys increases
parameter space, Figure S1 depicts a 2D contour plot of
two representative material properties — m∗

h versus PBE
EG (see Methodology) — for (a) compounds in the MP
database, i.e. endpoints only, in comparison to (b) can-
didate alloy materials with steps of δx = 0.01 in an alloy
pair AxB1-x and assuming Vegard’s law with no bowing for
EG and 1/m∗

h.[28] The histograms above and to the right
of each diagram depict the distribution for each individ-
ual parameter. Note that this is simply an illustration, to
show the expanded property space accessible when consid-
ering alloys, and is not a quantitative comparison since the
choice of δ is arbitrary.
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